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Resum (CAT)
Els processos de transport i mescla horitzontals són clau per descriure la majoria

de fenòmens a l’oceà. Les estructures lagrangianes coherents es defineixen com

màxims locals dels exponents de Lyapunov finits i expliquen aquests processos. Cal

però, una seqüència del camp de velocitats per estimar-los numèricament. Aqúı,

estudiem fins a quin punt aquests exponents es poden estimar mitjançant l’anàlisi

singular de diferents imatges satèl.lit de l’oceà. L’anàlisi singular es basa en la

descomposició d’un senyal en components fractals caracteritzats pels anomenats

exponents de singularitat.

Abstract (ENG)
Horizontal transport and mixing are key to properly understanding changes in the

global ocean. Lagrangian Coherent Structures explain those processes and are de-

fined as the local maxima of Finite Size Lyapunov Exponents which can only be

estimated by a long enough sequence of the velocity field. We discuss to which

extend the exponents can be estimated by using only singularity analysis of remote

sensed images of the ocean. Singularity analysis is based on the decomposition of a

signal in fractal components characterised by the Singularity Exponents which we

compare to the Lyapunov Exponents.
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On the relationship between SE and FSLE in remote sensed images of the ocean

1. Introduction

Generally speaking, the ocean flows can either be described as laminar or turbulent. Motion in laminar
circulation can be well characterized since neighbour particles advected by these flows track similar paths.
In the turbulent case, movements are dominated by twirls, eddies and certain randomness. Particles
that are close to each other might be widely separated later. Ocean circulation is described by the lat-
ter case.

Finite size Lyapunov exponents (FSLE) characterize the rate of separation of close trajectories and
therefore, provide information of the dispersion processes and the Lagrangian coherent structures. The
information provided by FSLE is enough to assess a major part of the circulation on the global ocean. The
main disadvantage of using FLSE to asses dynamic information is that their estimation requires a long
sequence of velocity field data. The main objective of this work is to understand the extent to which we
can estimate FSLE by using only remote sensed images (without requiring the velocity field). For this, we
will explore the functional relationship between the singularity exponents (SE) of the sea surface tempera-
ture (SST) signal and the FSLE. The former exponents represent the Eulerian description of dynamics while
the latter represent the Lagrangian approach. In general, an autonomous system, with constant velocity
fields presents an evident correspondence between Eulerian and Lagrangian descriptions. The same is not
evident for turbulent systems.

The article is structured as follows. The first section includes the theoretical background of the Eulerian
and the Lagrangian approaches. We provide the mathematical definition of the singularity and Lyapunov
exponents, a discussion on how these exponents can describe the underlying dynamics and the introduction
of a discrete and finite method to estimate them. The remaining sections are devoted to assess a preliminary
functional relation to explain FSLE in terms of SST singularity exponents (SST SE). We compute the SE of
sea surface temperature (SST) and absolute dynamic topography (ADT) following an algorithm based on
the most unpredictable measure. FSLE are acquired from an external source. Finally, we asses a functional
relationship between the exponents. We also evaluate the correspondence between SST SE and ADT SE
which are theoretically equivalent.

2. Theoretical background

The rapid rotation of the Earth and the strong stratification of the essentially incompressible1 water in the
ocean generate turbulent dynamics in the open ocean. Indeed, the turbulence is not bidimensional but 3-D
in the ocean. Satellite measurements can only capture the 2-D turbulence, but the ocean is 3-D turbulent.
We could define two dimensional stream functions that approximate the motion in the ocean, although not
always with the required accuracy. In fact, the dynamics in the ocean are characterized by having structures
and areas where infinitesimal perturbations grow exponentially in time and thus it defines a chaotic system.
Sections 2.1 and 2.2 respectively present the mathematical Lagrangian and Eulerian characterizations of
the geometrical structures that describe the stream functions.

1∇u = 0 for any compressible flow, where u is the velocity vector.
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2.1 Characterization of Lagrangian coherent structures via finite Lyapunov
exponents

Lagrangian finite time coherent structures (LCS)

On the definition of LCS: Consider the two-dimensional velocity field known for finite times

ẋ = u(x, t)

with x ∈ R2, t ∈ R, and u as a continuously differentiable function on x and t. The trajectory defined by
this field starting at time t0 in x0 will be referenced as x(t, t0, x0). The map Ft

t0 : x0 → x(t0 + t, t0, x0)
relates initial positions at t0 to later positions at time t0 + t in the phase space.

Dynamics generated by the velocity field can be explained in terms of material lines. Particles moved
by the flow advection with time form curves that are called material lines. We will denote them by L(t).

Definition 2.1 (Material line). One parameter family of class C 1 curves satisfying Ft
t0(L(t0)) = L(t).

Given a material line L(t) ∈ R2, (L(t), t) is a two dimensional invariant manifold in the extended phase
space R2 × R.

Attracting and repelling material lines must be distinguished in terms of local stabilities and instabilities.
They are defined over an open time interval I within R.

• Attractive L(t) over I: A material line such that any particle close to it exponentially converges
to that manifold at some time in R.

Given a material line L(t) and a concrete trajectory x(t) ∈ (L(t), t) consider TxL(t) as the two-
dimensional tangent plane of (x(t), t) in the extended phase space.

L(t) is an attractive material line if there exists a constant v > 0 ∈ R and a smooth family of
one-dimensional subspaces E s(t) in the extended phase space tangent to TxL(t) such that

∇Ft
t0(x(t0))E

s(t0) = E s(t) and ∥∇Ft
t0(x(t0))|E s(t0)∥ ≤ e−v(t−t0)

for t0, t ∈ I.

• Repelling L(t) over I: An attractive material line over I backwards in time. This means that any
perturbation of the position of a particle initially on L(t) will exponentially diverge from L(t).

We call finite time hyperbolic line over I any material line that is attractive or repulsive.

The stability of the material lines changes over time. Lagrangian coherent structure boundaries are
defined as material lines with locally the longest or shortest stability or instability times. Therefore, we
can understand them as linearly stable or unstable material lines. In other words, Lagrangian coherent
structures (LCS) retain the stability of the hyperbolic lines over time.

Given a material line L, we introduce the following scalar fields TL(x0, t0, t) to rigorously define LCS.
For any initial condition x0 at time t0 ∈ [t−1, t1] we consider TL1(x0, t0, t1) =

1
t1−t0

∫
IL1 dt, where IL1 is the

maximal open set within [t0, t1] over which the trajectory x(t, t0, x0) remains in a material line of stability
type L1.
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Definition 2.2 (Lagrangian coherent structure). Local extrem of the scalar fields TL1,2(x0, t0, t).

This definition yields to four distinct types of LCS. Let C(t) be a Lagrangian coherent structure boundary
over time.

• C(t) as local maximizer of TL: Structure capturing or pushing away particles for locally the longest
times on both sides of L(t).

• C(t) as local minimizer of TL: This case explains LCS’s behaviour near a wall (physical barrier).
Concretely their approach to the wall forward in time.

At larger distances from any wall, the coherent structures boundaries are local maximizers of TL1 and TL2

fields. In the framework of the ocean dynamics, potential walls are physical boundaries such as a coast or
ice edge which are not considered in this project and therefore, LCS as local minimizers of time fields are
no longer considered in our discussion.

On the detection of LCS: According to the previous definition, if we consider the maximal net growth
of a unit vector transverse to a LCS, it has to be locally the largest over I. This holds for either attractive
or repelling structures.

Consider a repelling structure C(t) and x0 a point in C(t0). ∇x0F
t
t0 is the linearized flow map around x0

so the following equation describes the propagation of a unit vector et0 selected at x0 not tangent to C(t0)
along the trajectory x(t, t0, x0). (et0 is identified with v.)

et(x0) = (∇x0F
t
t0)et0 .

We concluded that repelling coherent structures are the maximizers of |et0(x0)| over all possible et0 and x0.
We define E t

t0(x0) as the maxim resulting propagation over all choices of et0 .

E t
t0(x0) = max

|e|=1
|(∇x0F

t
t0)et0 | ≡ ∥(∇x0F

t
t0)∥,

where ∥ ∥ is the operator norm ∥A∥ = max|x|=1 |Ax| for a general matrix A ∈ R2. By definition, ∥A∥ is the

square root of the maximal eigenvalue of the positive matrix ATA namely ∥A∥ = λmax(ATA), so E t
t0(x0)

can be rewritten as

E t
t0(x0) =

√
λmax((∇x0F

t
t0)

T (∇x0F
t
t0)),

ẋ(t) = Λx(t),

x(t) = x(t0)e
Λ(t−t0) = x(t0)E t

t0(x0).

This is a measure of the maximal growth over the most repelling direction in x0. x0’s with large values
of E t

t0(x0) define the LCS.

Finite size and time Lyapunov exponents approach to LCS

We define the finite time Lyapunov exponent (FTLE) at (t, t0, x0) as Λ(t, t0, x0) following the next equation

Λ(t, t0, x0) =
1

2(t − t0)
loge

(
λmax((∇x0F

t
t0)

T (∇x0F
t
t0))

)
.
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Following the formality in the previous section, the local maxima of E t
t0(x0) coincides with the local maxima

of the finite time Lyapunov exponent since they are related as

E t
t0(x0) = eΛ(t,t0,x0)(t−t0).

Therefore, x′0s locally maximizing of FTLE is a good approach to LCS. As the relative stretching tends
to grow rapidly, it is more convenient to work with FTLE that are not attenuated by the factor (t − t0)
than to directly work with E t

t0(x0).

Finally, we introduce the concept of finite size Lyapunov exponents (FSLE) as an equivalent to FTLE.
Accordingly to [7] they are defined as

Π(r , t0, x0) =
loge(r)

2(t − t0)
, (1)

where t − t0 is the minimum time for which r = λmax((∇x0F
t
t0)

T (∇x0F
t
t0)).

It is key to understand the intuitive idea of finite Lyapunov exponents as a measure of the exponential
growth of small perturbations. In this sense, a more intuitive definition equivalent to (1) is associating the
FSLE to the maximum value of

λ(x0, t0, δ0, δf ) =
1

τ
log

(
δf
|δ0|

)
δ0
|δ0|

over all the accessible directions of δ0.

τ is the backward time that the two trajectories take starting at time t0 at x0 and x0+δ0 to respectively
reach the prescribed separation δf > |δ0|.

FTLE and FSLE have units of time−1. Both exponents represent a finite time, respective size, descripti-
on. Therefore only under certain conditions do FSLE ridges imply close FTLE ridges which in turn indicate
the existence of an hyperbolic LCS [4]. In this work we assume their total equivalence as detectors of LCS
so FSLE highlight the transport barriers that control the horizontal exchange of water in and out of eddy
cores.

For ocean signals, we only dispose of finite and discrete time sequences of images of discrete spatial
resolution, namely ∆x . This determines the implementation of algorithms to compute FTLE and FSLE.
According to the previous definitions, FTLE are defined over a prescribed time while FSLE are defined
over a prescribed final separation. Concretely, FSLE depend on the relative size of δ0 and δf against ∆x .
Choosing δ0 ≪ ∆x would imply that no point lying further than δ0 of any grid point would ever be tested.
Therefore, in the regions where the signal is stretching, the method would give a discontinuous sampling of
the structures. Instead, if δ0 ≫ ∆x , the algorithm would lead to a loss of spatial resolution since the same
smeared stretching manifold would be detected on several grid points. The previous simple argument shows
the convenience of using a value of δ0 close to ∆x . The second length scale δf determines the size of the
structures willing to be evaluated. This is the reason why we choose FSLE and not FTLE. We prioritize
controlling the length of the structures we want to detect above their duration.

2.2 Singularity analysis for remote sensed images of the ocean

Singularity analysis is the process of obtaining a dimensionless measure of the degree of irregularity at each
point of a given signal s(x). This measure is known as the singularity exponent and it refers to the analysis
of singularities2 of differentiable functions.

2Singularities as points, where the mathematical object ceases to be well-behaved by lacking differentiability or analytically.
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Singularity exponents

Different implementations of computation for singularity exponents are possible. Here we expand on the
most usual meaning in the theory of complex systems. This is understanding SE as the continuous extension
of continuity or differentiability. SE are dimensionless and track transitions independently of their amplitude.
Therefore, even subtle structures can be detected on their images.

Consider the pseudo-Taylor expansion ([9, 11]) of the signal

s(x+ r)− s(x) = α(x)rH(x) +O(rH(x)), r → 0.

If any point x in the signal behaves according to the previous expansion for a concrete value of α(x),
the non necessarily integer exponent H(x⃗) is defined as the singularity exponent. It is also known as the
Hölder exponent measuring the degree of regularity (positive value) or irregularity (negative value) of the
signal. Negative exponents characterize regularity. Exponents vanishing to zero imply continuity but non-
differentiability. Values in the range (0, 1) are found in points where the signal is more regular than a
continuous one but still not differentiable. Finally, 1, 2, and further k integers imply k-differentiability.

Any continuous function ψ(x) can be recognised as a wavelet or mother wavelet. For efficiency reasons,
common wavelets are characterized by properties such as differentiability, orthogonality, compact support,
symmetry, and vanishing moment [5].

Definition 2.3. The wavelet projection or continuously wavelet transform of a signal f (x) on the mother
wavelet ψ in x and with a scale scope r is

Tψs(x, r) =
∫

ds(y)
1

rd
ψ

(
x− y

r

)
,

Tψs(x, r) = αψ(x)r
H(x) +O(rH(x)), r → 0, (2)

Tψ∇s(x, r) = αψ(x)r
h(x) +O(rh(x)), r → 0,

where d is the dimension of the signal domain.3 For ψ(x) to be a wavelet for the continuous wavelet
transform, there is an admissibility criterion implying that the first order moment must vanish to zero.

The wavelet projection is the convolution of the signal with a re-sized version of the mother wavelet ψ(x).
The resolution parameter r regulates the range of the wavelet. For its construction, it conveys redundant
information but is well adapted to detect transitions in data.

It is proved that for signals obeying (2), their wavelet projections also scale with the same power law
over r (see [3]). This power law is well adapted to filter long range correlations and just detects local
structure that represent the continuous scale of changes.

In practice, the computation of the exponents from real discrete data has a rough resolution even
using wavelet transformations. Wavelet projections of the modulus of the gradient lead to a more precise
determination of SE with improved spatial resolution. For any signal scaling as a power law in r , its gradient
scales similar. Understanding the singularity exponents as a continuous measure of differentiability, the
gradient operator lessens by one unit the differentiability degree. This implies that the SE of the gradient,
let it be h(x), is related to the SE of the proper signal H(x) like

h(x) = H(x)− 1.

3In the two dimensional case we work, d = 2.
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In this project we will consider SE associated to gradient measures. Therefore, the nomenclature for SE
will be h(x). There exists a theoretical bound for h(x) in range (−1, 2).4

Multifractal signal and the most singular component (MSC)

One way to show that a given image possess multifractal structure is to construct a positive measure µ
which assigns positive value to any set A. The measure must take into account any sharp transitions in A.
We define the measure in terms of its density like

µ(A) =

∫
A
dµ(x) with dµ(x) ≡ |∇s|(x) dx.

The behaviour of any particular point x can be characterized in terms of the evolution of the measure of
balls centered on x of radius r denoted as Br (x).

The measure µ defines a multifractal if it is characterized by unique exponent h(x) and coefficient α(x)
such that

µ(Br (x)) = α(x)rd+h(x) +O(rd+h(x)). (3)

O(rd+h(x)) is negligible in comparison with rd+h(x).

The exponent h(x) in (3) attains the definition of singularity exponent for the gradient measure µ.

α(x) depends on the particular metrics in the definition of the ball and the scaling unit for r , but does
not provide information about changes in scale. All the information about the evolution under changes in r
is contained in the SE which is independent of metrics and scaling units.

As discussed in the previous section, applying a wavelet projection over the measure leads to the same
power law that permits a more efficient estimation of the exponents. This is

Tψµ(x, r) = αψ(x)r
h(x) +O(rh(x)) equivalent to m(x, r) = α(x)rh(x) +O(rh(x)) (4)

for any m(x, r) defined measure of unpredictability.

Definition 2.4. A fractal component Fh is defined as the set of points of an image having the same
exponent h.

Fh = {x such that h(x) = h}.

The decomposition of a signal as the union of different fractal components is called a multifractal
decomposition of the signal.

Fractal components are of a very irregular nature. The odd arrangement of the points in fractal sets
can be characterized by counting the number of points contained inside a given ball of radius r . We define
this number as Nr (h, ∆h), where ∆h is a threshold for admissibility in Fh. As r → 0 the following power
law holds ([10])

Nr (h, ∆h) ≈ rD(h).

The exponent D(h) quantifies the size of the set of pixels with singularity h as the image is covered with
small balls of radius r . It is known as the fractal dimension of the associated fractal component Fh. The

4The lower bound comes from the physical limit that no point from a signal tracing of the ocean dynamics can infinitely
diverge. The upper bound is consequence of the lower bound and the transitional invariance of the signal.
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function D(h) defined ∀h ∈ (−1, 2) for signals of ocean tracers is called the dimension spectrum of the
multifractal image. Fractal components usually range from dimension one, D(h) ≈ 1, for the most singular
values (curve-like components), to dimension D(h) ≈ 2 for higher exponents that extend on less definite
areas.

The multifractal behaviour allows a strong hierarchical organization in images. This organization is
explained in terms of the most singular components (MSC).

Definition 2.5. The most singular component (MSC)5 is the fractal component

F∞ = {x such that h(x) ∈ ]h∞ −∆, h∞ +∆[},

where h∞ is the minimal value over the domain and ∆ a threshold.

There exists a unique operator associated to the most singular component (see [8]) that reconstructs
the image. For that, the MSC is recognised as the more informative component.

Estimation of singularity exponents using the unpredictable point manifold

Signal reconstruction from a partial set of the gradient is the key concept to define a wavelet that pre-
cisely identifies SE. We discussed how one can properly reconstruct any signal from the gradient of MSC
points. Therefore MSC can be identified as the less predictable set of points. The unpredictable point ma-
nifold (UPM) consists in the set of points that cannot be reconstructed from others so it can be associated
to the MSC.

To numerically characterize the unpredictable point manifold, a measure of unpredictability for each
point x has to be settled. It can be identified as Tψµ in (4) and singularity exponents can be derived from
it.

The following is a punctual estimation of the singularity exponent h(x) defined in (4).

h(x) =
log

( Tψµ(x,r0)
⟨Tψµ(x,r0)⟩

)
log r0

+O
(

1

log r0

)
, h(x) ≈

log
(m(x)

⟨m⟩
)

log r0
,

where m(x) is an effective UPM-measure for 2D images. For more information on the algorithm, please
contact the author. The algorithm is part of an internal note of the Institute of Marine Sciences in Barcelona.

3. Lyapunov and singularity exponents in a global
scale and empirical functional relation between
them

The results presented here are obtained analysing the following data: (i) Backward-in-time, finite size Lya-
punov exponents and orientations of associated eigenvector. The exponents are distributed on a 0.250 grid
on a global coverage and have units of day−1. Figure 2a contains a map of FSLE from this product.

5MSC might also be found as the most singular manifold (MSM) in the bibliography.
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(ii) SST and ADT global, two-dimensional remote sensed signals from Copernicus Marine Service with
spatial resolution of 0.250 and daily temporal resolution. The computation of the exponents is based on an
estimation of the unpredictable measure (image processing) introduced in 2.2.

(a) (b)

Figura 1: (a) SST global image from [2] Global Ocean OSTIA Sea Surface Temperature and Sea Ice
Analysis Results for January 25th, 2022. Temperatures in the color bar are expressed in Celsius degrees.
(b) Global image of the singularity exponents (SE SST) computed from (a).

The SST SE map is qualitatively as expected. There are some areas of the ocean known to be the
most energetic ones and having the most important streams. Some of these areas are the East coast of
North America, with the Gulf Stream, and the Antarctic Circumpolar Current that connects the Southern
Ocean. We see in our results that these areas have the most negative exponents with well defined fractal
components. In the areas showing the most negative exponents, complex undulated shapes, wave-like
instabilities, eddy-like patterns, and intense vortices are distinguished. Those areas are associated to the
most singular component. Their organization in curve-like structures justifies their fractal dimension to
be D(h) ≈ 1. Areas with positive exponents are less defined and do not present a clear structure nor
intense vortices. The organization in fractal components is more confusing so their fractal dimension is
closer to D(h) ≈ 2; the maximal possible.

(a)
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0.00

F
S

L
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SE negative values fit (f(x) = 0.173x− 0.046)

SE positive values fit (f(x) = −0.046)

96% condifence interval

FSLE mean value and standard deviation

(b)

Figura 2: (a) Backward-in-time, finite size Lyapunov exponents and orientations of associated eigenvectors
product in [1] for January 25th, 2022. (b) Global fit and piecewise function explaining the relationship
between FSLE and SST SE of the global maps 2a and 1b.
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Analysing the FSLE, one can distinguish boundaries of coherent structures that coincide with the
previously described as the most energetic areas. The boundaries are defined by curve-like patterns with the
most negative values of the exponents (i.e. the regions with the strongest exponential attractive material
lines). Visually, the structures detected by singular analysis and Lagrangian coherent structures seem to
effectively have a correspondence, at least with their location on the maps. The analysis of data by density
plots shows that most of the SE exponents are found in the range [−0.1, 0.1] and the Lyapunov ones in the
range [−0.1,−0, 05]. In fact, the most negative values of FSLE are only associated to the most negative
values of SST SE. Nevertheless, negative values of SE SST are present in the whole range of FSLE values.

To define an empirical functional relation between SST SE and FSLE we compute the density and
normalized density plots. Then we take the average over FLSE values (see Figure 2b). This is considering
the mean value of the FSLE values xi associated to each SE (SE values ordinated in bins of 0.02 units
width). Each point includes the standard deviation representation of the average value it represents σ =√∑N

n=1(xi−x̄)2

N−1 and the 96% interval of confidence. Then, the functional relation (FSLE in terms of SE) is
assessed over this averaged plot, constructing a continuous piecewise function. For the negative domain
of SE we have linearly fitted the values from the previous average. We have associated the constant
value f (SE = 0) to the positive SE. f represents the linear fit. This is only a preliminary estimation of the
relation.

The coefficient of the regression between FSLE and negative SE SST is r2 = 0.88. We observe that
the relationship between these two variables is not completely linear. However, in this analysis we simplify
and we keep on using this preliminary linear fit. This linear fit has some limitations: (i) the average is a
measure of the most frequent value for a given SST SE value, but the standard deviation shows that there
is a large variability that will not be taken into account in this approach. (ii) the mean value is affected
by outliers and in this case produces an overestimation of the most negative FSLE values. Besides the
limitations of the linear fit approach, the data itself also has some accuracy limitations and the methods
applied for deriving FSLE and SE also add uncertainty to the full process.

Reconstruction of FSLE from SST SE

We have reconstructed the FSLE’s map using the SST SE map and the functional relation established in
Figure 2b. We observe several limitations of the applied approach: (i) By definition, the areas having the
less singular exponents, namely positive, are associated to constant, close to zero values of FSLE. This is a
first limitation of our reconstruction because the real FSLE map, although having areas with light variability
does not have any constant part. (ii) The range of variation of the reconstructed FSLE (−0.2 : 0) is lower
than the one of the original FSLE values (−0.4 : 0). This is in part because of the effect of the linear
fitting that does not allow recovering the most negative values. In addition, the use of the average FSLE
to define the functional relation leads to a limited accuracy given by the variability of the FSLE around
this average. (iii) Since the functional relation we establish is linear, the negative SE in the reconstructed
map has the same pattern as the original SE map 1b. Here we compare the FSLE original map 2a and the
reconstructed one. The figure shows the percentage of points where the difference between reconstructed
and actual FSLE values (y -axis) is lower than a threshold (x-axis) for the same map used in the linear
fit (no independent assessment, orange line) and for a different map (independent assessment, blue line).
Both lines remain quite close one to the other with a small degradation for the independent map. We see
that with this approach the reconstructed FSLE describes the 70% of the map with an accuracy of 0.05.
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Figura 3: (a) Hit percentage for the global reconstructed map for the same day the functional relation
has been derived the 25th January 2022 (self fit), and SE SST map of another day (8th June, 2021). (b)
Absolute error between the FSLE reconstructed map and the AVISO+ map 2a.

The map of the differences between reconstructed and actual FSLE values reveals that the reconstruction
especially fails to predict the most negative exponents (for the limitations above described). See Figure 3b.

3.1 High energic regions

Finally, we assess up to which extent the global relation found in Figure 2b is also accurate at regional
scales. We have analysed the following three areas: (i) Gulf Stream area in East Coast of North America:
[75W , 30W ] [30N, 60N]. (ii) Angulas current area in South Africa: [0E , 45E E] [60S , 30S ]. (iii) South
Atlantic current area in South America: [75W , 30W ] [60S , 30S ].

The patterns of the functional relation are the same. The reduced number of pixels used in those
regional plots make them more rough than the global ones. In future work we plan to use a larger time
series of maps (for both global and regional assessment) in order to derive more robust density plots.

The linear fitting of the average FSLE value as function of the SST SE is also consistent with the one
of the global maps. However we observe a constant offset between the regional and the global fitting. We
associate these differences to the background high energy level of the selected regions.

Comparison between singularity exponents from ADT and SST

Finally, we have repeated the previous analysis but changing the SST SE for the ADT SE. From a theoretical
point of view, both SE should be equal and both of them should be in correspondence with the streamlines.
However, we observe that the accuracy of the different acquisitions is also a source of uncertainty affecting
our results.

Qualitatively, comparing the maps representing the exponents they present the same large scale features.
However, some important differences between both exponents appear. The most negative SST SE are
organized in smoother and narrower curves with less negative SE values than the ADT SE. This is because
of the effective spatial resolution of each product that is defined by the accuracy of the different instrument
measuring the data and the different data processing algorithms.

31Reports@SCM 8 (2023), 21–33; DOI:10.2436/20.2002.02.35.



On the relationship between SE and FSLE in remote sensed images of the ocean

4. Conclusions

The first objective of this paper is to understand two different mathematical concepts that describe the
state of the ocean.

The second objective is to assess up to which extent the structures defined by the LCS and by the
different multifractal components are related. The most negative FLSE are associated with the transport
barriers. In our comparison we observe that positive SST SE are associated with the FLSE with values
closest to zero, while the most negative SST SE present a monotonic growing relation with FSLE. We
have linearly fitted negative SST SE with FSLE and we have assessed this relation. This approach allows
representing 70% of the FSLE with an accuracy of 0.05. This analysis is the first step to understanding
how these two exponents are related. During the study some limitations have been identified: The linear
fitting overestimates the most negative FSLE. In the future we plan to fit with nonlinear functions to
better estimate the most negative FSLE. We observe constant offset between the regional and the global
fitting. We associate these differences to the background high energy level of the selected regions. This
suggests that depending on the accuracy required in future applications, having regional fittings could be
more appropriated than global ones.

We have selected the SST as the main ocean variable to be used to compute the reconstructed FS-
LE. This intrinsically assumes that the SE from any ocean variable are equal (this assumption is based
on [6]). However, in practice, because of the different accuracy of the available data, we have also observed
that there are significant differences between the SST SE and ADT SE. This leads to distinct functional
relations between the FSLE and the SE. In order to address this in the future we plan to use an extended
temporal series of satellite images. This would allow us to derive a more robust relationship between FSLE
and SE. With this we will assess which are the strengths and limitations of using one ocean variable or the
other. Besides, having larger temporal series will allow us to assess the temporal stability of the relationship
between FSLE and SE. Finally, we have also provided an estimation of the uncertainty associated to the
reconstructed FSLE which is based on the difference between actual and reconstructed values. There are
other metrics that could provide valuable information for marine and maritime applications. For example
the correspondence among the geometrical structures of both Lyapunov and singular exponents.
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Llüısa Puig Moner

view of the Theory and Applications of Wa-
velets, Y.-L. O, Ying-Lie, A. Toet, D. Fos-
ter, H.J.A.M. Heijmans, P. Meer, (eds), Sprin-
ger Berlin Heidelberg, Berlin, Heidelberg, 1994,
pp. 249–274.

[4] D. Karrasch, G. Haller, Do finite-size Lyapunov
exponents detect coherent structures?, Chaos
23(4) (2013), 043126, 11 pp.

[5] W.K. Ngui, M.S. Leong, L.M. Hee, A.M. Ab-
delrhman, Wavelet Analysis: Mother Wavelet
Selection Methods, Applied Mechanics and Ma-
terials 393 (2013), 953–958.

[6] V. Nieves, C. Llebot, A. Turiel, J. Solé, E. Gar-
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